Weather Effects (Group 1)

Jared Headings, Ted Zhu, Ian Kirchner

Weather in Games

Audio and Visual
Effect

Direct Change to Play

Weather as a Visual Effect

Weather Affecting Play - Both Simple, and Complex

%
: /) /
g /,’ e
7/ —=

17

R ' 3 =
N\ 2
| . |

. Q https://youtu.be/PeT8hUGJ00I2t-225

https://youtu.be/PeT8hU6Jo0I?t=22s
https://youtu.be/PeT8hU6Jo0I?t=22s

GTAV:

e Highly complex weather system!

(@)

(@)

Default: Cloudy weather, no adverse effects on gameplay

Every 2-4 in-game days: Sunny weather, no adverse
effects on gameplay

Every 3-5 in-game days: Rainy weather of random

intensity

e Rainstorms in GTA are masterpieces

(@)

(@)

(@)

Water pools up on low spots in roads
Less stability in vehicles/risk of hydroplaning

N i
Will start as a drizzle, gradually build in intensity, then !

taper off
Lights will dynamically turn off in whole sections of the

game, simulating power outages
Controller vibrations during thunder

So why do we have weather in games?

Weather == Immersion

“The more familiar everything feels, the less we notice the
machinery behind the illusion.”

The mystical “suspension of disbelief”
DriveClub - https://www.youtube.com/watch?v=hViwrRGfuHU

https://www.youtube.com/watch?v=hViwrRGfuHU

Immersion

e Games lacking immersion can make it
harder for you to suspend your disbelief

e Physics-based, realistic weather is a great
way to gain immersion!
o It’s what we experience every day.

Creating Realistic Weather

10090 realism = 10090 immersion

Modeling Weather

Weather is a highly complex system

Requires flow modeling along a 3D grid

q now - Current Moisture Value at Forecast Point
q east - west - Represents the Moisture Gradient Across
Adjacent Grid Points
U - Represents the Average Wind Between q west and g east
The COMET Program

w

Example of 3-D Grid Box in a Grid Point Model
e COMET

Modeling Weather

e Large number of factors to model

O

O O O O

Relative Humidity
Temperature
Wind

Convection
Radiation

e Many different scales to consider

(@)

(@)

(@)

Global
Regional
Local

Parameterization

Conceptual Example of Scheme Using
Inferred Clouds: Post-precipitation State

e Resolution can only get so high

o Computationally impossible at certain point

e Large scale simulation requires supercomputers
e Highest resolution uses grid cells of ~Skm’

® Requires Parameterization

o Abstracting the internal processes of cells

[IAN DEMO

Modeling Weather in Games

e Add Levels of Abstraction

o Static weather
o Markov Model
o Temperature/Humidity/Wind curves

e FEasier to create, easier to simulate
e Provides a “good enough”
approximation

Static Weather

e Predefine weather for areas in the game
e Pros

o Allows for the most control
o Easiest to implement
e C(Cons

o Not adaptable
o Detracts from a sense of a living world

Markov Model

® Define all weather states ChLe
Clear

O

o Cloudy

5 Rain Clear

o Storm
e Define each state’s transition

probability

e Transition to new weather on a timer - -
Overcast Storm

Markov Model

e Pros

o Provides control while still having

weather transitions

o Not very complex
e Cons e TEer o .
o Difficult to find average rain chances

o Requires additional interpolation for

weather transitions

Weather Feature Curves

¥ [z ¥ Weather Control (Script) @
Script WeatherControl (o]
. Cloud Control) | @
e C(reate or generate curves for various o Rain (RainControl) | ©
ebug
features Time WorldTime (WorldTim: ©
Sun Sun (SunControl) Q
@) Wlnd Sky Colaor
Temp Curve
o Temperature Humd Curve
. 1. Pres Curve
= Humldlty Cloud Radius Curve |§
e} EtC Cloud Coverage Cur
: Temp
e Sample these at a given rate tumd
e Combine the samples for weather ey
o Temp > 0~ Humd > 65 => rain i

Rain Thresh
Rain Chance
Ticks

Active
Raining

Ih':ﬁ":' Particle System

Weather Feature Curves

e Pros
o Transitions are more smooth
o Capable of more realism
e Cons
o Difficult to control
o Difficult to implement

Physically Based Simulation

Representing Physical Objects

7> N
DESELEN

e Meshes

o used in 3D games to represent solid objects.

o computationally expensive in simulations

e Sprites
o used in 2D games

o manually programmed without physics-based simulation

e Particle Systems
o simple images or meshes moved in great numbers
o depict entities that are fluid and intangible in nature
o eg, liquids, smoke, flames, clouds

Particle Systems, in depth.

e Each particle represents a small portion of a fluid

e All the particles together form an impression of the complete entity being
represented

o E.g, A cloud, tornado, mist

IRLIETT
RIS 1‘1;“"“"!.‘\"“[e
i it i

!
l i
e LM]
i

Particle Systems vs. the Particle

Particle System
e A Particle Emitter

o Some 3D mesh or shape

® Emission rate

o particles/second

e Emission position
on mesh

o Usually randomized

oo+ Higights |

Particle

Lifetime

(@)

Usually a few seconds

Velocity vector

o Affected by forces acting on
the system
Appearance
o Size, color, rotation

Particle System

Particle Systems in Unity

e A Particle System can act as its own
GameObject,

e Or a Component of an existing
GameObject.

e Unity provides several ways to
customize its behavior.

e (Caveat: Cannot apply user-defined
forces on given particles.

[MRresimulate []Wireframe

Custom Particle Systems

e Need to create own Particle
Object to perform arbitrary
force manipulations on
particles.

e (Custom particle system
needed for simulation of a
tornado.

FIUld Dynamics Simulation "DYNAMICAL MODELING OF A TORNADO"

Steven Torrisi, 2015

ﬁt - (ﬁ . V)il'] npdS = —p]ﬂ(:n- q)qds (2.2)

Which states that the pressure applied onto an arbitrary surface S (by mul-

V-

tiplying the vector pointing inwards, n by the pressure p) is equal to the

momentum flowing into or out of the system through the same surface.

where u is the fluid velocity
vector,

p is the pressure,

f are other body forces such as
gravity,

and Re is the Reynolds

number (viscosity)

Custom Particle Systems

void FixedUpdate () {
lifetime += Time.fixedDeltaTime;
if (lifetime > 20)
2
Destroy(this.gameObject);
Vector3 towardsCenter = Vector3.Normalize(vortextCenter - transform.position);
Vector3 towardsCenterForce = towardsCenter * 10;

Vector3 tangential = Vector3.Normalize(Vector3.Cross(towardsCenter, Vector3.up));

Vector3 tangentialForce = tangential * 4f;

Vector3 upwardsForce = Vector3.up * Random.Range(18, 25);

Vector3 force = towardsCenterForce + tangentialForce + upwardsForce;

rb.AddForce(force);

TED DEMO

Bibliography

http://gamestudies.org/0801/articles/barton

http://docs.unity3d.com/Manual/ParticleSystems.html

http://rams.atmos.colostate.edu/at540/fall03/fall03Pt7.pdf

https://www.assetstore.unity3d.com/en/#!/content/2714

https://gamedev.stackexchange.com/questions/20564/algorithm-for-randomized-weather

http://gamestudies.org/0801/articles/barton
http://gamestudies.org/0801/articles/barton
http://docs.unity3d.com/Manual/ParticleSystems.html
http://docs.unity3d.com/Manual/ParticleSystems.html
http://rams.atmos.colostate.edu/at540/fall03/fall03Pt7.pdf
http://rams.atmos.colostate.edu/at540/fall03/fall03Pt7.pdf
https://www.assetstore.unity3d.com/en/#!/content/2714
https://www.assetstore.unity3d.com/en/#!/content/2714
https://gamedev.stackexchange.com/questions/20564/algorithm-for-randomized-weather
https://gamedev.stackexchange.com/questions/20564/algorithm-for-randomized-weather

